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The hydrodynamic effects on the late-stage kinetics in spinodal decomposition 
of multicomponent fluids are examined using a lattice Boltzmann scheme with 
stochastic fluctuations in the fluid and at the interface. In two dimensions, the 
three- and four-component immiscible fluid mixture (with a 10242 lattice) 
behaves like an off-critical binary fluid with an estimated domain growth of 
t ~176176 rather than t ~/3 as previously estimated, showing the significant 
influence of hydrodynamics. In three dimensions (with a 2563 lattice), we 
estimate the growth as  /0.96+0.05 for both critical and off-critical quenches, in 
agreement with phenomenological theory. 

KEY WORDS: Lattice Boltzmann method; growth kinetics; multicomponent 
fluids. 

1. I N T R O D U C T I O N  

It is well known that a binary fluid mixture undergoes phase separation 
if rapidly quenched from a high-temperature phase to a point in the 
coexistence region. Moreover, when the domain sizes are much larger than 
the interfacial thickness, there is only one dominant length scale in the 
system (for review see ref. 1 ). It is accepted that the late-time dynamics in 
a binary alloy or glass in which the order parameter is conserved, follows 
a growth law of R( t )~  t ~/3, where R(t) is the average size of the domains. 
This growth law is characteristic of the long-range diffusion of particles 
between domains and was first predicted for off-critical quenches by 
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Lifshitz and Slyozov. c2) Methods to carry out simulations of phase 
segregating systems with hydrodynamic interactions include molecular 
dynamics (MD), direct numerical simulation of time-dependent Ginzburg- 
Landau equations, cell dynamical systems, 13) and more recently, lattice 
gas ~4) and lattice Boltzmann (LB) models. 15'6) Lattice Boltzmann simula- 
tions have recently been successfully used to study spinodal decomposition 
for critical quenches for a binary fluid in the presence ~5) and absence of 
porous mediaJ 6) The various simulation techniques have tried to address 
the question of the growth of single-phase domains and the scaling proper- 
ties of the correlation or structure functions. The underlying aim has been 
to find certain "universality classes" for first-order phase transitions in 
which the growth law and scaling properties are independent of the details 
of the interactions, spatial dimension, and the number of components. 

The aim of this work is to determine the growth law in two and three 
dimensions for three- and four-component fluids with equal volume frac- 
tions and compare the results to that for an off-critical binary quench with 
unequal volume fractions. We obtain results in which the hydrodynamic 
interactions are present as well as absent and show that hydrodynamics 
is important. In previous work on the LB method for studying phase 
segregation~S. 6~ fluctuations due to correlations in the particles have been 
neglected. We include the effects of fluctuations on domain growth in 
multicomponent systems by incorporating stochastic fluctuations in the 
fluid stress tensor using a scheme recently proposed by Ladd ~71 and fluctua- 
tions in the color gradient to perturb the interface. 

The influence of the number of components on domain growth and 
scaling has been recently examined in two dimensions for a Potts model 
with two and three components using Monte Carlo ~8~ as well as for a three- 
component fluid using molecular dynamics (MD) ~91 simulations. The Potts 
model does not include hydrodynamics and therefore the result of t ~/3 for 
the growth law for two and three components is not surprising. The con- 
clusion of the MD work for a three-component fluid shows that the growth 
exponent is also 1/3. Since a thorough MD study for fluids requires a large 
number of particles and has to be run for very long times, we have under- 
taken a lattice Boltzmann approach while also incorporating fluctuations. 
Our results demonstrate that for off-critical binary quenches and for three- 
and four-component fluids the growth exponent for late times scales as 
/o.4+o.o3 in two dimensions. This is to be compared with t ~/~ if hydro- 
dynamics was not relevant to phase segregation and domain growth in 
two dimensions. Our three-dimensional result is the first simulation for 
an off-critical quench to verify the result of Siggia tl~ that is based on a 
phenomenological model of droplet coalescence. We also determine that 
dynamical scaling, which is a consequence of the existence of one dominant 
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length scale, is valid in two and three dimensions. The multicomponent 
fluids show the same scaling behavior as an off-critical binary quench. 

2. LATTICE B O L T Z M A N N  M O D E L  FOR 
S P I N O D A L  D E C O M P O S I T I O N  

Lattice gas and lattice Boltzmann (LB) methods can be used to study 
hydrodynamic phase segregation using parallel computing techniquesd 1~ 
They simulate fluid properties, phase segregation, and the interface 
dynamics simultaneously and allow complex boundaries to be handled 
easily. The methods have been described as providing the most promising 
tools to study flow through porous mediad TM Unlike methods such as the 
use of the Langevin equation ~3) that are based on a phenomenological 
model of fluid behavior and are computationally intensive, LB methods 
simulate hydrodynamic phase segregation in a natural way without the 
introduction of ad hoc relations between the order parameter fluctuations 
and the fluid dynamics. The lattice Boltzmann method is a discrete, in 
space and time, microscopic kinetic equation description for the evolution 
of the particle distribution function of a fluid. Point particles move along 
the links of a lattice (hexagonal in two dimensions), obey certain collision 
rules, and macroscopically mimic the Navier-Stokes equations in certain 
limits. The LB two-phase model we used is a modified version of the 
immiscible fluid model proposed by Grunau et aL ~4~ that is based on the 
original model introduced by Gunstensen et aL ~5~ The multicomponent LB 
model in this paper is an extension of the lattice gas ~t6~ and lattice 
Boltzmann ~71 models by Gunstensen and Rothman. 

The local order parameter is defined as 

~k(x, t)=pt(x, t ) -  ~. pk(x, t) 
k = 2  

N k x where Pk = Z i = o f ; (  , t) ( k =  1 ..... n) is the particle density and f,k.(x, t) is 
the distribution function for the kth component of the fluid mixture at site 
x and time t moving along the link in the direction i. Here n is the number 
of components and N is the number of velocity directions. Also, 

f/(x, t)= ~ f/~(x, t) 
k = l  

is the distribution function for the total fluid, where i = 0, 1 ..... 6 represent 
the velocity directions at each site of a hexagonal lattice. The state i = 0 
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corresponds to a portion of the fluid at rest. The LB equation for fi(x,  t) 
can be written as 

f~(x  + ei, t +  1 )= f~ (x ,  t)+g-2/k (1) 

where k denotes the fluid component, and 

is the collision operator consisting of a term representing the rate of change 
o f f~  due to collisions and a term representing the color perturbation. The 
vectors ei are the velocity vectors along the links of a hexagonal lattice. The 
form of (t2~) r is chosen to have a single time relaxation with 

(f2~) c = - ( f ~  - f~(eq')/z 

where r is the characteristic relaxation time and f~~ is the local equi- - * i  

librium distribution. ~'8~ The surface tension inducing perturbation (t'2~)P 
and the recoloring procedure are chosen appropriately so that Laplaces's 
law holds for the model. (~4~ 

The local color gradient for each component Gk(x) is defined by 

N 

Gk(x) = ~ e;f~(x + ei) 
i = 1  

and the surface color perturbation that is added to segregate and stabilize 
the interface is 

(f2~)P =A IG~I cos 2(0,.-  0~-) 

where 0; is the angle of lattice direction i and 0c/- = arctan(GJGx)k k is the 
angle of the local color gradient for the kth component. It can be analyti- 
cally calculated ~tS" 14) that the surface tension is proportional to ~ A r p .  
Here p=~_, ,~ , f )  is the total particle density. In the original models ~5' ~41 
the recoloring step always makes the local color gradient to lie along the 
direction perpendicular to the interface. 

To mimic the temperature effect on the interface, a noise is introduced 
to perturb the local color gradient direction 0cr by assuming that the 
angles are distributed according to a Gaussian distribution about 0ca-. The 
variance of the angle distribution depends on some local temperature. 

A cause for concern about the use of the LB method for studying 
spinodal decomposition has been the lack of statistical correlations in the 
particles. Previous simulations show that droplets form and collapse due to 
an initial random concentration field. It has been questioned if this initial 
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fluctuation-driven system is equivalent in scaling dynamics to a system with 
intrinsic noise (such as lattice gas and molecular dynamics simulation) 
or a system with a noise drive due to the temperature of the system. In 
order to study the effects of fluctuations on domain growth, we have incor- 
porated stochastic fluctuations in the fluid stress tensor according to a 
scheme proposed by Ladd/7) The basic idea is that, on length scales and 
time scales intermediate between molecular and hydrodynamic, thermally 
induced fluctuations can be reduced to random fluctuations in the fluxes of 
conserved variables, for instance, the stress tensor. It is thus plausible that 
in an LB simulation, molecular fluctuations can be modeled realistically on 
intermediate scales, although the microscopic interactions are different 
from the real dynamics obtained from, for example, an MD simulation. To 
incorporate this effect, a stochastic term, f~(r, t) representing the thermally 
induced fluctuations in the stress tensor is added to the time evolution of 
the density distribution. That is, 

f~ (x  + e,, t +  1) ----f,.(x, t) + (s + (I2~)P +f~(x, t) )(2) 

where f l  is chosen so that its stress moment is nonzero, while conserving 
mass and momentum. The random stress fluctuations are uncorrelated in 
space and time and are sampled from a Gaussian distribution. The inten- 
sity of the random stress represents the magnitude of the local temperature 
(see ref. 7 for details). 

3. S I M U L A T I O N  RESULTS A N D  D I S C U S S I O N  

We performed critical quenches with ( O ( x ) ) = 0 ,  while ( q s ( x ) ) r  
for off-critical quenches. The largest systems simulated were 10242 in two 
dimensions and 2563 in three dimensions. Although we have investigated 
the domain growth and scaling properties for a variety of lattice sizes and 
parameters, we report on the domain growth for only one set of param- 
eters. The results obtained with smaller lattices and different parameters are 
consistent with the data presented here. 

The lattice was initialized with a random distribution of the different- 
colored fluids. The growth kinetics is characterized through the order 
parameter correlation function G(r, t) = (~b(r) ~(0))  - (t,k) 2 averaged 
over shells of radius r. The domain size R(t) is then defined as the first zero 
of G(r, t) and the Fourier transform of G(r, t), the structure factor S(k, t), 
is expected to have the scaling form R(t)dF(kR(t)). The function F(x) 
[x=kR(t)]  is the scaling function, which is expected to behave as x a, 
where for large x, 3 =  - ( d +  1), which is Porod's law. 

We first discuss the two-dimensional results. The effects of fluctuations 
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Fig. 1. The effects of fluctuations on domain growth for a binary fluid on a 5122 lattice after 
a critical quench. The three cases represent growth due to (i) thermally induced fluctuations 
via the stress tensor (+), (ii) fluctuations due to initial velocity perturbation only ([]), and 
(iii) both thermal and initial velocity fluctuations (O). 

on domain  growth is shown in Fig. 1 for a binary fluid after a critical 
quench. The three cases shown are the growth due to (i) thermally induced 
fluctuations as described above ( + ), (ii) fluctuations due to initial velocity 
only with average velocity ( u )  = 0 and ( u 2) :~ 0 ( [] ), and (iii) bo th  thermal  
and initial velocity fluctuations included (<~). I f  neither (i) nor  (ii) is 
present, no patterns are obtained. Since the energy will decay due to dis- 
sipation in the system, for very long times the systems with initial fluctua- 
tions or thermal  fluctuations should behave differently. However ,  in the 
current  study, up to the times simulated, the results are consistent with 
each other and show that  the origin of  the fluctuations has little bearing on 
domain  growth. Thus, the previous use ~5,6) of  an initial fluctuation in 
velocity only as the driving mechanism for droplet  format ion would seem 
justified. In all subsequent simulations in this work  we have used case (iii). 

Figure 2 shows the domain  growth for a binary fluid after an off- 
critical quench for ( ~ ( x ) )  = 1/3( O ) and ( ~ ( x ) )  = l/2( + ). The  early-time 
domain  growth of t 1/3 and the later-stage growth of  t ~177176176 are clearly 
evident regardless of the average order parameter .  We can interpret  this as 
long-range diffusion of fluid particles across growing domains  at early time 
giving way to domain  growth where hydrodynamic  or inertial effects 
become important .  Our  value appears  to be consistent with the prediction 
t 2/5 made  by Furukawa(19); however,  it is not  in accord with the t ~/3 predic- 
tion by Miguel et alJ 19) for two-dimensional  off-critical mixtures. In order  
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Fig. 2. Domain growth for a binary fluid after an off-critical quench for (~b(x ) )=  1/3(O) 
and (~b(x)) = 1/2( + ). The straight lines represent fits to (~b(x))= 1/3 of ~ t v3, showing the 
early-time diffusive growth, and ~t  ~ for the later-stage growth where inertial effects are 
important. 

to unders tand  the effects of  hydrodynamics  in the system, the velocity u of  
the part icles is set to zero before the collision step. F o r  such a system, the 
convective effect and dissipative mechanisms will d i sappear  and the only 
dynamics  left is the diffusive process. Figure  3 shows the domain  growth  for 
this diffusive motion.  The minor i ty  phase forms small  drople ts  at  first, 
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Fig. 3. Growth For a binary fluid after an off-critical quench for (~(x))=I/3 without 
hydrodynamics. The transient behavior due to interfacial diffusion ( ~/0.23) eventually leads to 
the expected long-range behavior. 
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which then grow very slowly into larger domains. The growth is very slow 
and is hampered by transient effects which slow down the ordering process. 
A transient regime where the growth scales as t ~ close to t ~ can be 
identified and is likely caused by short-range diffusion along the boundary 
of the domains, as explained by Mullin. ~2~ This short-range diffusion 
crosses over at very late times to a t ~/3 behavior charac ter i s t i c  of long-range 
diffusion. Though this has been previously predicted theoretically, ~21 and 
has been detected using extrapolation methods, we are not aware of any 
off-critical simulations in which it has been directly observed. 

We expect topological factors to play a significant role in the ordering 
process for three- and four-component fluid mixtures. We observe that 
the domains are rather compact and can eventually be hindered from 
growing, similar to the effects of confinement of a fluid mixture in a pore 
geometry) 5~ Figure4 shows the domain growth for three- and four- 
component mixtures in the presence of hydrodynamics. For the symmetric 
three- ( ~ )  and four- (x) component mixtures an early t j/3 regime can be 
identified which crosses over to a clear t ~176177 o.o2 growth for late times where 
the domain morphology is compact. The growth for a three-component 
system with concentrations (0.2, 0.2, 0.6) (not shown here) has similar 
behavior. Comparison of Figs. 2 and 4 shows that, as expected, a ternary 
and four-component symmetric fluid mixture behaves like an off-critical 
binary mixture with an estimated growth law of t ~176176 for late times. The 
early-time behavior for ( ~ )  and (x) shows the t 1/3 growth characteristic of 
long-range diffusion. Our results clearly indicate that hydrodynamics plays 
a significant role in the late-time behavior, contrary to an earlier MD 
work tg~ which we suspect was not run long enough. A Langevin model 
simulation of Farrell and Valls 12~1 on a 100 by 100 grid for an off-critical 
binary quench predicts t ~177176176 This result has been interpreted as 
showing t 1/3 behavior. However, the work by Wu et  al. ~2z~ with this method 
indicates an exponent very close to results reported here. It appears that 
large lattice sizes and long-time simulations are necessary to obtain correct 
growth kinetics by this method. The reason for the similar behavior of 
three- and four-component fluids to that of the off-critical binary fluid may 
be understood in terms of the number of contact points of different phases. 
The physics appears to be dominated by the two-phase line contacts rather 
than the finite number of three- or four-phase point contacts. 

The behavior of the scaling function F ( x )  during the late stages of 
growth is shown in Figs. 5-7 for an off-critical binary mixture, a three- 
component system, and a four-component system, respectively. The results 
show that dynamical scaling holds for all three cases and the scaling for 
large x ( x >  2) is consistent with an exponent around - 3 ,  showing that 
Porod's law is approximately satisfied. For x <  1, our results indicate an 
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four-component mixture (x)  (I/4, 1/4, 1/4, 1/4). 

exponent just over 2 for all three cases. This is in contrast with the value 
of 4 predicted by Furukawa ('-3~ for a fluid mixture. However, it is consistent 
with estimates from other two dimensional simulation studies. (24''-5" 22) In 
particular, the recent results of Wu e taL  (22) from a Langevin dynamics 
study suggest that the small x scaling J depends on the "strength" of the 
hydrodynamic interaction. 

i i I I l l l l  I 1 I , , l l l  I 1 I I I , l l l  I I 1 I l l t l l  

0.1 . x % ~  3 

0,01 r 

~ o.ool •215 
0.0001 

10 "s 

10 .6 r 

10. 7 . . . . . . . .  I , , JJi lJl l  j . . . . . . .  I ,, 
0.01 0.1 1 10 1 0 0  

X 

Fig. 5. The scaling function F(.x) as a function of .x [x=kR(t}] for an off-critical binary 
fluid with < ~b(x)> = 0.5 in two dimensions (I024:). The data are for times t = 10,000 ( �9  
15,000 (x),  20,000 ( + )  (lattice time units). 
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Fig. 6. The scaling function F(x) as a function of x [x=kR(t)] for a three-component 
mixture (1/3, 1/3, 1/3) in two dimensions (10242). The data are for times t=20,000 ( ~ ) ,  
30,000 (x), 40,000 ( + )  (lattice time units). 
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The three-dimensional growth is shown in Fig. 8 for 2563 for a critical 
(O)  and off-critical ( + )  quenched binary fluid with ( i f ( x ) ) = 0 . 5 .  Both 
cases show similar behavior. Finite-size effects have not allowed us to run 
the simulation long enough to estimate the exponents for later stage growth. 
However, if we calculate an effective exponent ~26~ herr, by considering the 
domain sizes at time Mt and t, where M is an integer, then the extrapolated 
behavior for large domain is R(t)~/,0.96+0.05 (see the insert of Fig. 8). The 
results are in agreement with Siggia's prediction. ~~ We note, however, that 
the extrapolation procedure used may not be firmly established and could 
be a source of controversy. 

The behavior of the scaling function F(x) for accessible late times 
for a three-dimensional critical mixture is shown in Fig. 9. The results 
appear consistent with dynamical scaling and the behavior for x > 2 is in 
agreement with Porod's law (d~ = -4) .  

Experimental studies have been inconclusive in the estimates of growth 
exponents. The measurement of an off-critical quench of a simple acid- 
water mixture gave a growth exponent between 0.32 and 0.35, (27) whereas 
a growth rate of ~ 0.5 was observed in a very careful study of an off-critical 
quenched block copolymer. ~2~ Transient effects and the lack of error 
analysis in the previous studies make direct comparison with experiments 
difficult. A recent experiment in microgravity indicates a growth of 1/3 over 
several decades. ~29~ Thus we can only stress the need for more experiments 
on off-critical binary quenches and multicomponent fluids. 

In conclusion, we have used a lattice Boltzmann model with fluctua- 
tions in the fluid and interface to study the kinetics of domain growth and 
scaling behavior in two and three dimensions for an off-critical quenched 
binary fluid and three- and four-component fluid mixtures. We find that 
the domain growth scales as /0.4+0,03 in two dimensions, indicating that 
hydrodynamics is relevant to the kinetics of phase separation as seen in 
critical quench. Our three-dimensional results are in agreement with 
phenomenological theory. ~ ~0~ 
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